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We describe and interpret computer  simulations of the time evolution of a 
binary alloy on a cubic lattice, with nearest neighbor interactions favoring 
like pairs of atoms. Initially the atoms are arranged at random;  the time 
evolution proceeds by random interchanges of nearest neighbor pairs, using 
probabilities compatible with the equilibrium Gibbs distribution at tem- 
perature T. For  temperatures 0.59T~, 0.81To, and 0.89Tc, with density p 
of A atoms equal to that  in the B-rich phase at coexistence, the density 
C~ of clusters of l A atoms approximately satisfies the following empirical 
formulas: C1 ~ w(1 - p)a and C~ ,.~ (1 - p)~Q,w ~ (2 ~< l ~< 10). Here w is 
a parameter  and we define Q~ = ~K e-~K~, where the sum goes over all 
translationally nonequivalent /-particle clusters and E(K) is the energy of 
formation of the cluster K. For  l > 10, Qz is not  known exactly; so we use 
an extrapolation formula Q~ ~ AwZ~l -~ e x p ( - b P ) ,  where w~ is the value 
of w at coexistence. The same formula (with w > w~) also fits the observed 
values of C~ (for small values of l) at densities greater than the coexistence 
density (for T = 0.59T~): When the supersaturation is small, the simula- 
tions show apparently metastable states, a theoretical estimate of whose 
lifetime is compatible with the observations. For  higher supersaturation 
the system is observed to undergo a slow process of segregation into two 
coexisting phases (and w therefore changes slowly with time). These results 
may be interpreted as a more quantitative formulation (and confirmation) 
of ideas used in standard nucleation theory. No evidence for a " sp inoda l "  
transition is found. 
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1. I N T R O D U C T I O N  

The object of this paper is to summarize and interpret the results of some 
computer simulations which demonstrate, among other things, the possibility 
of metastable states in a binary alloy (and in the corresponding lattice gas). 

In earlier papers of this series ~1-4~ we described the results of computer 
simulations of the time evolution of such an alloy following quenching from 
a high temperature (where the equilibrium state is spatially uniform) to a 
low temperature for which the equilibrium state has comparable amounts of 
two different phases. In following the system's evolution (at the lower tem- 
perature) from the initial "macroscopically" uniform state to a state in 
which there are distinct regions containing A-rich and B-rich phases, our 
main tool was the Fourier transform of the pair correlation function. In the 
present paper we summarize and interpret the results of simulations where 
the true equilibrium state after quenching still has two phases, but only a 
small amount of one of them. In the language of the density-temperature 
diagram, we are still quenching to points inside the two-phase region, but 
they are now close to the coexistence curve. This part of the diagram is called 
the nucleation region. Our tool for investigating the time evolution is now 
the analysis of clusters of the minority atoms. 

We find that at points close to the coexistence curve (i.e., small super- 
saturation in the lattice gas language) the system can stay for very long times 
in a metastable state of uniform macroscopic density. As the supersaturation 
is increased, the rate at which nucleation and segregation of the new phase 
take place increases in an apparently continuous fashion until we find our- 
selves in the rapidly varying regime studied earlier. No sharp "spinodal 
transition" from metastable to unstable states was observed, although the 
probability of nucleating a critical cluster changes rapidly with the degree 
of supersaturation. This fits in with our earlier findings that the Cahn- 
Hilliard linearized theory, ~ which among other things also predicts such a 
transition, does not yield a good description of the computer simulations. 
Similar conclusions have also been drawn by other authors ~6,r~ on the basis 
of both theory and experiment. 

The simulations were done on the CDC 6600 computer at the ERDA 
Mathematics and Computer Laboratory at New York University. The 
program simulates a simple cubic lattice of N sites (where N = 125 • 103 or 
27 x 103) with periodic boundary conditions, each site of the lattice having 
two states, "occupied" and "unoccupied" (in the interpretation appropriate 
for alloys, an "occupied" site holds an A atom and an "unoccupied" site 
holds a B atom). At the initial time, a specified number pN of randomly 
chosen sites are put in the "occupied" state and the rest in the "unoccupied" 
state. The program chooses a pair of neighboring sites at random, then 
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exchanges their occupation states (i.e., the atoms on them) with a probability 
given by 

[exp(-f l  AE)]/[1 + exp(-/3 AE)] (1) 

where/3 = 1 /kT  is a constant and AE is the increase in energy caused by the 
interchange. The energy is defined as 

E = - V Z n~nj, n~ = 0,1 (2) 
t,1 

where V is a constant, n~ is the occupation number of the ith site, and the 
sum goes over all nearest neighbor pairs of sites. The transition probability 
(1) satisfies the detailed balancing condition for equilibrium at temperature 
1//cB/3. 

As the simulation proceeds, the computer periodically records informa- 
tion about the current configuration. In particular, it calculates the sizes of 
all the clusters (maximal connected sets of occupied sites) in the configura- 
tion. This information about clusters yields, at low densities, a description of 
the configurations which provides a convenient way to understand what is 
going on, and makes possible some quantitative comparisons between theory 
and simulation. 

2. Q U A L I T A T I V E  D E S C R I P T I O N  OF T H E  D A T A  

Most of the simulation runs reported on here were done at a temperature 
T such that/3 V = 1.5; that is, T = 0.59Tc, where Tc is the critical temperature, 
which is known very accurately from series expansions/a~ The lowest density 
studied was p = 0.0146, which, according to the Pad6 approximant formula, ~a~ 
is the saturated vapor density at this temperature. The simulation runs at this 
density show, as we would expect, a distribution of cluster sizes which varies 
rapidly at first, since the initial random state corresponds to equilibrium at 
infinite temperature rather than at 0.59T~, but soon settles down (after about 
50 attempted exchanges per site) to an equilibrium in which no cluster of more 
than 11 particles was ever observed. 

At the next density, 0.02, the behavior is qualitatively very similar, but 
with somewhat more clusters of each size than at density 0.0146. The largest 
cluster observed among the configurations recorded contained 26 particles, 
and clusters of this size usually lasted only a short time. There was no 
observable tendency for the cluster distribution to change with time (apart 
from fluctuations) and since this state has a higher density than that of the 
standard " v a p o r "  phase, we interpret it as a metastable state. 

At the next density studied, p -- 0.035, the distribution of small clusters 
appears to reach equilibrium in about the same time as before, 50-100 
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attempted exchanges per site; but it takes longer (about 400 attempted 
exchanges per site) for the number of clusters in the size range 30-50 to build 
up. By the end of the run (about 450 attempted exchanges per site) the 
number of clusters in this size range appeared to be fairly steady, but the runs 
were not long enough to decide definitely whether the state at this density 
could be regarded as metastable. 

At densities 0.05 and 0.06, a new pattern of behavior is beginning to show 
itself. Once again a fairly stable distribution of cluster sizes is established 
after about 50-100 attempted exchanges per site, but now this distribution 
is itself slowly changing with time: The number of large clusters (larger than, 
say, 50) is seen to build up slowly with time, as is the number of particles in 
such clusters, while the number of particles in small clusters (ten particles or 
less) can be seen, despite the fluctuations, to be decreasing steadily on the 
average. Thus, in the p = 0.05 case the total number of particles in clusters 
of ten or fewer particles decreases from about 5400 (i.e., 0.043 per site) after 
100 attempted exchanges per site to about 4800 (i.e., 0.035 per site) after 
500 attempted exchanges per site; and in the p = 0.06 case the same effect 
was even more marked. For the p = 0.075 case we made one much longer 
run, lasting for nearly 6500 attempted exchanges per site. By the end of this 
run, the distribution of small clusters was no longer changing rapidly, the 
number of particles in such clusters having, settled down at about 2700 (i.e., 
0.022 per site), and the remaining particles had arranged themselves into about 
25 large clusters ranging in size from about 100 particles to about 750. Very 
slowly, the smallest clusters among these were shrinking or breaking up and 
the largest were growing, a phenomenon known as Ostwald ripening in the 
metallurgical literature. At these densities, therefore, it is no longer a question 
of metastability; rather, we are witnessing the formation of nuclei of the 
high-density phase, which come to an approximate steady state with the 
low-density phase. The density of this low-density phase exceeds the saturated 
vapor pressure because the vapor pressure over a convex surface, such as that 
of a 750-particle droplet or cluster, is higher than that over a fiat surface. 

The last density studied in some detail in this series of simulations at 
T = 0.59Tc was p = 0.1. The phenomena appear to be similar to those at 
p = 0.075, but they happen still more rapidly. The speed of the process grew 
further as the density was increased to p = 0.12, where only Short runs were 
made. 

The phenomena thus appear to go over continuously into what was 
observed at the much higher density p = 0.2, which was studied in another 
series of simulations (~ at the same temperature. Here the system came fairly 
quickly to a state which was characterized by a "g a s "  phase containing 
small clusters of size ~< 10, one or two "g ian t "  clusters (over 4000 particles) 
containing about half the particles, and some intermediate clusters of sizes 
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between 10 and 1000 whose number decreases fairly steadily with the progress 
of time. The results of this simulation are thus consistent with our results 
for the cluster size distributions at lower densities. We have not, however, 
attempted a quantitative analysis of the cluster distribution at density 0.2 
because at such high densities it is not clear that we can assign all the large 
clusters to the high-density phase: Even at infinite temperature, where there 
is certainly only one phase, large clusters appear as soon as the density 
increases toward the percolation density, which is about 0.31 for this lattice. 
Beyond this density there will be a cluster of size proportional to the size 
of the systemD ~ 

3. E Q U I L I B R I U M  CLUSTER D I S T R I B U T I O N S  

As a first step toward a quantitative theory of the phenomena observed 
in the simulation, we should like to have a theoretical expression for the 
equilibrium distribution of the sizes of small clusters at various temperatures 
and densities. At very low densities we could use the upper and lower bounds 
given by Lebowitz and Penrose, (1~ but at the densities we are interested in 
these bounds are not close enough together to give accurate information, 
particularly for the larger clusters. Accordingly, we shall instead use an 
empirical formula. 

A useful empirical formula is suggested by the lower bound on C~, the 
equilibrium number of /-particle clusters per site, given in Eq. (30) of 
Ref. 10; for a simple cubic lattice this bound is 

C~ i> Qz[z(1 - p)5]*(1 - p)2 (3) 

where Q, is the "cluster partition function" defined by 

0r = ~ e-aE(K) (4) 
K 

Here the sum includes just one member from each set of translationally non- 
equivalent/-particle clusters, and E(K) is the (negative) energy of the cluster 
K. The form of Eq. (3) suggested looking for an approximation of the form 

C, ~ Q,w'(1 - p)k (5) 

where w depends on z (i.e., on p) but Qt = Q~(fl) does not. This formula 
would imply that the quantities C~/QI, Cz/Q2, C~/Q3 .... form a geometrical 
progression with common ratio w. The values observed at equilibrium, at the 
three different temperatures studied, did form approximate geometrical 
progressions, with the exception of  the first member C~/Q1 in each case. The 
appropriate value of k was about 4. To fit the observed values of C~/QI, 
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Table I. Test of the Empirical Formula for Cz at Saturation Densities 

Temperature 0.59Tc 0.81To 0.89Tc 
flV 1.500 1.09428 1.000 

Density 0.0146 0.075 0.1272 
w 0.010526 0.029837 0.035247 

Observed Formula Observed Formula Observed Formula 

C1 

c~ 
c3 
c4 
cs 
C6 
C~ 
c~ 
co 

lO 

1=1 

0.010126 0.010071 0.023370 0.023615 0.023002 0.023435 
0.001382 0.001404 0.005944 0.005840 0.006060 0.005879 
0.000328 0.000331 0.002582 0.002603 0.002673 0.002817 
0.000102 0.000100 0.001388 0.001422 0.001621 0.001640 
0.000035 0.000034 0.000870 0.000867 0.000940 0.001063 
0.000013 0.000013 0.000549 0.000566 0.000716 0.000734 
0.000006 0.000005 0.000395 0.000387 0.000525 0.000531 
0.000002 0.000002 0.000278 0.000274 0.000459 0.000397 
0 0.000001 0.000210 0.000199 0.000336 0.000304 
0 0.000000 0.000163 0.000148 0.000294 0.000237 

0.014593 0.014580 0.064709 0.064695 0.071932 0.071923 

however, it was necessary to take k to be about  3, rather than 4, when l = 1. 
The empirical formulas we shall use are thus (since Q1 = 1) 

Cl = w ( 1 -  p)a, C~= Q~w'(1- p)4, I > / 2  (6) 

(A somewhat  better fit with the data can be obtained by using the exponents 
3.1 and 3.9, but  the improvement  is hardly great enough to justify using 
nonintegral  exponents.) Provided w >/ z(1 - p)-4, the approximate formulas 
(6) are consistent with the rigorous inequality (3), and if w = z(1 - p)-~, 
the approximate  formula  is correct to the lowest two orders in p when 
l = 1 or 2. However,  the actual values o f  w that  fitted the data best were 
closer to z(1 - 0) -3 than to z(1 - p) -4. 

Table I gives the observed cluster distributions for the saturated " v a p o r "  
phase at three temperatures 0.59Tc, 0.81 To, and 0.89Tc, together with values 
given by the empirical formulas. The value o f  w was chosen so as to make the 
total number  of  particles in clusters o f  sizes f rom one to ten, as given by the 
empirical formulas,  equal to the observed number  o f  particles in such 
clusters. The significance o f  the number  ten is that  we have exact formulas for 
Qz with l ~< 10; these were kindly supplied by M. Sykes. 

4. L A R G E R  C L U S T E R S  A T  E Q U I L I B R I U M  

To study metastability and nucleation we want  to use the empirical 
formulas  (6) for values o f  I considerably greater than ten, and to do this we 
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need values of  Qz for those values of  L Since these are not known exactly, 
we have estimated them using an extrapolation formula of the form suggested 
by Fisher, (~1~ 

Q~ = AI  -~ e x p ( a l -  bl ~) (7) 

where A, % or, a, and b are constants. The value of  a was obtained by assuming 
that the radius of  convergence of  the approximate series for the density, 

cO 

p = w(1 - p)3 + O,w'l(1 - p)4 (8) 

was exactly equal to w~, the value of  w for the saturated vapor; that is, we 
took a = - l o g  w~. The other constants A, r, b, and a were chosen so as to 
give a good fit to the known values of  Q3 .... , Q10 (we excluded Q1 and 
sometimes Q2 because this made possible a much better fit to the remaining 

03. 
At the temperature 0.59Tc, where all our simulation runs at super- 

saturated densities were made, it turned out that a good fit could be obtained 
f o r 3  ~< t~< 10with 

cr = 5/8, ~" = 0, b = 3, A = e -2 = 0.1353 

giving the extrapolation formula 

Q, _~ w~-' e x p ( - 2  - 3l 518) (T  = 0.59Tc) (9a) 

with w~ = 0.010526. 
For the other two temperatures considered here, the corresponding 

formulas (which give Qa ..... Q10 with an accuracy of about 1 ~ )  are given by 

Qt -~ w~ -z exp(0,965 - 4.75l ~ (T = 0.81To) (9b) 

Qz -~ w8 -z exp(2.82 - 6.41 ~ (T = 0.89Tc) (9c) 

An equally good fit to the known Qz, 3 ~< 1 ~< I0, and to Q2 as well, can 
be obtained by setting in (7) ~r = 16/25 = 0.64, the value suggested by 
Fisher, and just varying A, T, and b, We find, then, 

"I -~ exp(-2 .11 - 2.63l~176 T = 0.59Tc (10a) 

wJQ~ ~ l - a -3 rexp( -3 .08  - 0.52l~ T =  0.81To (10b) 

1-1'42 exp( -3 .1  - 0.324l~ T = 0.89Tc (10c) 

If  we require T to have the value 2.2 suggested by Fisher (for T - +  T~, I--> co), 
however, then the fit is not so good. The inadequacy of  a formula of this 
type with z = 2.2 for representing the observed concentrations of large 
clusters has already been noted by Miiller-Krumbhaar and Stoll. (12~ 

A test of  our extrapolation formulas (10a)-(10c), assuming that (6) hold 
well also for l > 10, is given in Table IL The test gives rather good agreement 
for the temperature 0.81T~, but for T = 0.89T~ the predictions of  the 
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Table II. Test of the  Extrapolated Formula for C~ at Saturat ion  Density for  
Var ious Temperatures  ~ 

Temperature 0.59Tc 0.81Tr 0.89Tc 
~V 1.5 1.09428 1 

Density 0.0146 0.075 0.1272 
ws 0.010526 0.029837 0.035247 

P q 
Observed Formula Observed Formula Observed Formula 

E c, E c, ~ c, ~ c, ~ c, ~ c~ 

1 10 0.0146 0.0146 0 . 0 6 4 8 1  0 . 0 6 4 7 1  0 . 0 7 2 6 0  0.07194 
11 11 0 0.00000 0 . 0 0 1 2 7  0 . 0 0 1 2 3  0 . 0 0 2 3 5  0.00209 
12 13 0.00200 0.00192 0 . 0 0 4 3 3  0.00349 
14 15 0.00147 0.00140 0 . 0 0 3 8 7  0.00279 
16 18 0.00157 0 . 0 0 1 4 7  0 . 0 0 4 9 7  0.00326 
19 22 0.00134 0 . 0 0 1 2 5  0 .00561  0.00318 
23 27 0.00098 0 . 0 0 0 9 3  0 . 0 0 5 3 9  0.00279 
28 32 0.00057 0 . 0 0 0 5 5  0 . 0 0 4 2 8  0.00196 
33 38 0.00040 0.00040 0 . 0 0 4 6 3  0.00168 
39 46 0.00028 0 . 0 0 0 3 0  0.00426 0.00152 
47 55 0.00015 0 . 0 0 0 1 8  0 .00321  0.00113 
56 66 0.00008 0 . 0 0 0 1 1  0.00300 0.00090 
67 79 0.00006 0 . 0 0 2 7 0  0.00067 
80 95 0.00004 0 . 0 0 1 9 8  0.00051 
96 114 0.00002 0.00134 0.00036 

115 137 0.00001 0 . 0 0 1 0 3  0.00025 
138 165 0.00000 0.00074 0.00017 

1 165 0.0146 0.0146 0.07492 0 . 0 7 4 5 8  0 . 1 2 6 2 9  0.09869 

a Comparison of observed with predicted values for ~p~ zs ~ C~, the number of particles 
per site in clusters of between p and q. 

extrapolation formula are too small by a factor of about four for the largest 
clusters. This may be due to the fact that at this temperature we are just on 
the borderline where percolation occurs ~13~ and our formulas (6) are not 
likely to be a good approximation for large I when that happens. For T = 
0.59Tc no test is possible since the concentrations of  large clusters are too 
small to measure. 

Similar fits could be obtained also by setting ~r = 2/3, its "c lass ica l"  
value. We shall not  discuss these extrapolat ion formulas further here, as they 
only affect the Cz for I > 10, where our analysis is in any case only qualitative. 

We should note here that  our  assumpt ion,  also made in the droplet  
model,  ~1~ that  Cz does no t  decay exponent ial ly  fast in l on the coexistence 

line has been recently proven rigorously by K u n z  and  Souillard. ~ 

5. M E T A S T A B L E  S T A T E S  

The observations described in Section 2 indicate that  at the temperature  
0.59Tc and the density 0.02 the system studied here can exhibit a metastable 
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state, in which the distribution of clusters is qualitatively similar to that in the 
saturated vapor. The system changes very slowly with time, if at all; yet the 
density is higher than the saturated vapor density at the temperature con- 
sidered, so that the true equilibrium state should have two phases, one of 
which would show itself as at least one very large cluster. In this section we 
show that the approximate formulas of the preceding two sections make 
possible an approximate quantitative description of  these metastable states. 
We are assuming, here, and this seems very likely, that our system is suffi- 
ciently large to exhibit "macroscopic"  behavior, i.e., effective segregation 
into a liquid and a vapor phase. 

A metastable vapor phase is one in which the density is higher than in 
the saturated vapor, but in which the high-density phase forms very slowly 
because clusters large enough to nucleate its growth, i.e., l > l* (the "cr i t ical"  
cluster size), form only very rarely. One way of calculating the properties of 
the metastable state ~15,16~ is to represent it by a restricted equilibrium ensemble 
constructed from the canonical or grand canonical ensemble by excluding all 
systems containing clusters larger than the critical size l*. We shall assume 
that if l* is not too small, the equilibrium concentrations Cz in such an 
ensemble can be calculated for 1 < l* from our empirical formulas (6). Let 
us think of any clusters of size exceeding l* in the actual system (not the 
restricted ensemble) as being nuclei of the new phase. To obtain a rough 
estimate of the rate of  formation of such nuclei we assume, as is done in 
standard nucleation theory (see, e.g., Ref. 17), that such a nucleus will be 
formed every time a cluster of size l* is found next to a cluster of size I. 
(We ignore, for this rough calculation, the probability that a nucleus of size 
l* will lose a particle.) The probability of this event is proportional to Cz, 
and also to C1. The factor of proportionality may be proportional to some 
power of l*, e.g., (l*) 2~3, the surface area, but will not depend strongly on 
6'1, Cz., or the density. Denoting this factor by K, we obtain the following 
crude estimate of J, the number of new nuclei of the new phase forming per 
lattice site per unit time (the unit of time being one attempted interchange 
per site): 

J = KC~C~. (11) 

From this formula we can make an estimate of the lifetime of the recta- 
stable state; for, as each cluster of the new phase is formed, it takes l* particles 
out of the original phase. The number of particles of the original phase there- 
fore changes at an initial rate of roughly Jl*, and if this rate of change were 
maintained, the density of  the low-density phase would fall from its original 
value p to its equilibrium value Ps in a time 

(p - Os) /Jl*  (12) 
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(For a more sophisticated way of  comput ing  the lifetime of  a metastable 
state see Ref. 18.) 

To use (11) and (12), we want  an estimate o f  the critical cluster size l* 
and of  its concentrat ion in the metastable state C~.. For  this, we may try 
the empirical formulas (6). We have already found these formulas to give 
quite a good fit to the equilibrium cluster distribution at the vapor  density 
p~(T) = 0.0146 for T = 0.59Tc. Table I I I  shows that  the fit is equally good, 
at least for the clusters o f  size ~< 10, for which we know Qz exactly, when the 
density has one o f  the values (0.02 and 0.035) for which we observed apparently 
metastable states. For  clusters larger than ten particles, we can estimate C~ 
by assuming that  (6) and (9a)-(9c) [which are easier to handle than (10a)-(10c)] 
hold approximately for l > 10, obtaining (for T = 0.59Tc). 

Cl - (1 - p)4(w/w~)Z e x p ( - 2  - 315/8) cc exp(Al - 315/8) (13) 

with A = log(w/w~). Taking for l* (as is done in s tandard nucleation theory) 
the value o f  l that  minimizes C~, we obtain 

I* = (15/8A) 8/3 (14) 

and so our  best (i.e., smallest) value for C~ is 

C~. = (1 - p)4 e x p [ - 2  + l*a - 3(1") 5/8] 
= (1 - ,o) 4 e x p [ - 2  - (9/8)(15/8A) 5/3] (15) 
= (1 - p)4 e x p ( - 2  - 3.2A -5/3) 

Table III. Test of the Empirical Formula for C= at 
"'Metastable'" Densities (T = 0.59Tc) 

p = 0.02, w = 0.012888 p = 0.035, w = 0.016849 
C~ Cl 

l Observed Formula Observed Formula 

1 0.012132 0.012131 0.015170 0.015141 
2 0.002080 0.002060 0.003307 0.003310 
3 0.000588 0.000595 0.001244 0.001250 
4 0.000222 0.000221 0.000599 0.000607 
5 0.000094 0.000093 0.000328 0.000333 
6 0.000042 0.000042 0.000197 0.000199 
7 0.000021 0.000021 0.000129 0.000126 
8 0.000008 0.000010 0.000085 0.000084 
9 0.000005 0.000006 0.000059 0.000058 

10 0.000003 0.000003 0.000043 0.000041 

10 ~ lcz 0.019952 0.019948 0.033278 0.033284 
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Thus our estimate for the lifetime of  a metastable state of  density p at T -- 
0.59Tc is, by (11), (12), (14), and (15), 

r ~ [(O - o8)/(1 - p)4KCll*] exp(2 + 3.2A -5/a) (16) 

with l* and A as defined above. The most important  part  of  this is the 
exponential, which can vary over a wide range as a result of  quite a small 
change in w, since ), -+  0 as w -,'- w~. 

The lifetime formula (16) is based on some quite crude approximations, 
in particular the use of  the equilibrium formulas (6) for Cz. and the neglect 
of  the possibility that a nucleus, once formed, may break up again. One can 
try to allow for these by using a more detailed model of  the kinetics, such as 
that proposed by Binder et al. (6"~8'~a~ In view of  the large uncertainties in 
the values of  C~. and K, we have not attempted this refinement. 

For p = 0.02 the estimated value of l* is 378 and the estimated lifetime 
is about  8 x 1017/K (this is of  course a large extrapolation from l ~< 10). 
On the time scale used in our simulations, such a lifetime certainly indicates 
a metastable state, and even in the real analog of our simulated system, for 
which our basic time unit might correspond to a small fraction of a second 
(depending on the temperature and the height of  the potential barrier to be 
overcome in displacing an atom), such a state could have a very long lifetime. 
For p = 0.035 the estimated value of  l* is 40 and the estimated lifetime is 
about 2 • 104/K. No clusters larger than 40 were observed in the simulation, 
but since none of the runs lasted more than 500 time units, the theory is 
consistent with the observations (on the assumption that Kis  not greater than 
about 40). For p = 0.05 the estimated value of l* is 25, and the estimated 
lifetime is about 4 x 10a/K. In the simulation at this density, some clusters 
larger than 25 appeared quite early, and the fraction of particles in such 
clusters was increasing at a rate of  roughly 1.5 x 10 -4 per time step. This 
rate of  increase corresponds to a lifetime of about 7 x 10 a time steps, and 
suggests that the value of K is not too far from 1. 

For temperatures other than 0.59Tc a precisely analogous method for 
predicting lifetimes can be used; but since we have done no simulations for 
metastable states at other temperatures, we omit the details.' 

6. THE G R O W T H  OF LARGE CLUSTERS 

As we have indicated in Section 2, the computer runs for densities 0.05, 
0.06, and 0.075 differ on our time scale qualitatively from those made at 
lower densities. At these densities, the system fairly rapidly forms some large 
clusters, and these clusters then grow slowly, at the expense of the particles 
in the small clusters. The nucleation rate is thus too high for the system to 
he metastable and we are therefore dealing with a time-dependent state of  
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Table IV. Test of Empirical Formula During Growth  of  N e w  Phase (T = 0.59Tc) 

p = 0.05, p = 0.06, p = 0.075, 
w = 0.018366 w = 0.018816 w = 0.018759 

G G G 

l Observed Formula Obse rved  Formula Obse rved  Formula 

1 0.015672 0.015746 0.015501 0.015629 0.014698 0.014847 
2 0.003704 0.003694 0.003737 0.003717 0.003466 0.003464 
3 0.001505 0.001520 0.001574 0.001567 0.001449 0.001456 
4 0.000790 0.000804 0 .000836 0.000850 0.000778 0.000787 
5 0.000494 0.000481 0 .000506 0.000521 0.000470 0.000481 
6 0.000315 0.000314 0.000354 0.000348 0.000320 0.000320 
7 0.000217 0.000217 0.000239 0.000246 0.000227 0.000226 
8 0.000159 0.000157 0.000198 0.000183 0.000173 0.000167 
9 0.000123 0.000118 0 .000144 0.000140 0.000136 0.000128 

10 0.000092 0.000091 0 .000116 0.000111 0.000114 0.000101 

lCz 0.039934 0.039946 0.041408 0.041413 0.038696 0.038696 

the system controlled by the growth of large clusters. As a first step toward 
understanding this process, we may look at the distribution of small clusters 
t o  see whether it can still be fitted by the empirical formula (6). 

In Table IV the observed concentrations of clusters of up to ten particles, 
averaged over the time interval t00-600 (the time unit being one attempted 
interchange per lattice site), are compared with this formula, using the same 
method as before for choosing w (that the total observed and calculated 
numbers of particles in these clusters should be equal). The results indicate 
that we can think of the small clusters as being approximately in equilibrium, 
but with a value of w which decreases slowly with time. The rate of its decrease 
is greater, the larger the density, which explains why it is possible for the time 
average of w for the density 0.075 to be less than that for density 0.06 even 
though the initial value is more. 

The next question to be answered is what mechanism determines the 
value of w, which in turn determines the distribution of small clusters. It 
appears that the value of w is determined by some average of the size of the 
large clusters, in accordance with the principle that the vapor pressure over a 
convex curved surface is larger than the equilibrium vapor pressure. The same 
idea is of course also used in standard nucleation theory. (17~ 

The calculation of l* in the preceding section is equivalent to a calcu- 
lation of the size of a cluster that will, on the average, neither grow nor 
shrink in the presence of a low-density phase at the given w. Clusters larger 
than this will tend to grow, absorbing particles from small clusters in the 
process; clusters smaller than l* will tend to shrink, evaporating particles 
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into the " v a p o r "  consisting of the small clusters as they do so. If  l* is smaller 
than a suitable average of the sizes of the large clusters, then the absorption 
process will predominate; this will reduce the density of the " v a p o r "  of 
small clusters, and hence l* will increase. Likewise, if l* is too large, it will 
tend to decrease. Thus the quantity w, which characterizes the quasiequitibrium 
state of the vapor of small clusters, will adjust itself until the rate of condensa- 
tion of particles from the " v a p o r "  of small clusters onto clusters that are 
larger than l* is just balanced by the rate of  evaporation of particles into this 
" v a p o r "  from clusters that, while smaller than l*, are still too large to be 
regarded as part of the " v a p o r "  of small clusters. This regulation mechanism 
ensures that l* and w change only very slowly as the result of much slower 
processes, such as the disintegration or coagulation of large clusters. 

The detailed quantitative modeling of this process is, however, beyond 
the scope of this paper. An attempt in that direction has been made by 
Binder and co-workers ~6'19~ and we intend to return to this point in another 
publication. The main point, as far as this paper is concerned, is that the 
distribution of small clusters is consistent with the assumption that these 
clusters are in approximate equilibrium even though the system as a whole is 
not. 
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